Source code for forml.flow._task

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

Flow actor abstraction.

import abc
import collections
import inspect
import logging
import types
import typing

import cloudpickle

import forml

if typing.TYPE_CHECKING:
    from forml import flow

LOGGER = logging.getLogger(__name__)

def name(actor: typing.Any, *args, **kwargs) -> str:
    """Infer the task name of given instance or type.

        actor: Type or actor instance.
        *args: Optional positional parameters.
        **kwargs: Optional keyword parameters.

        String name representation.

    def extract(obj: typing.Any) -> str:
        """Extract the name of given object

            obj: Object whose name to be extracted.

            Extracted name.
        return obj.__name__ if hasattr(obj, '__name__') else repr(obj)

    value = extract(actor)
    params = [extract(a) for a in args] + [f'{k}={extract(v)}' for k, v in kwargs.items()]
    if params:
        value += '(' + ', '.join(params) + ')'
    return value

# Actor features type.
Features = typing.TypeVar('Features')

# Actor labels type.
Labels = typing.TypeVar('Labels')

# Actor apply result type.
Result = typing.TypeVar('Result')

[docs]class Actor(typing.Generic[Features, Labels, Result], metaclass=abc.ABCMeta): """Abstract actor base class. This is a generic class with parametric input types ``flow.Features``, ``flow.Labels`` and output type ``flow.Result``. """ def __repr__(self): return name(self.__class__, **self.get_params())
[docs] @abc.abstractmethod def apply(self, *features: 'flow.Features') -> 'flow.Result': """The *apply* mode entry-point. Mandatory method engaging the M:N input-output *Apply* ports. Args: features: Input feature-set(s). Returns: Transformation result (i.e. predictions). """
[docs] def train(self, features: 'flow.Features', labels: 'flow.Labels', /) -> None: """The *train* mode entry point. Optional method engaging the *Train* (``features``) and *Label* (``labels``) ports of stateful actors. Unlike with the multiple apply-mode feature ports, there can only be a single train-mode feature port. Args: features: Train feature-set. labels: Train labels. """ raise RuntimeError('Stateless actor')
[docs] def get_state(self) -> bytes: """Return the internal state of the actor. The *State* output port representation. The particular bytes-encoding of the returned value can be arbitrary as long as it is acceptable by the companion :meth:`set_state` method. The default implementation is using :doc:`Python Pickle <python:library/pickle>` for serializing the entire actor object. Returns: State as bytes. """ if not self.is_stateful(): return b'' LOGGER.debug('Getting %s state', self) return cloudpickle.dumps(self.__dict__)
[docs] def set_state(self, state: bytes) -> None: """Set the new internal state of the actor. The *State* input port representation. The default implementation is interpreting the state as the entire actor object serialized by :doc:`Python Pickle <python:library/pickle>`. Args: state: Bytes to be used as internal state. """ if not state: return if not self.is_stateful(): raise forml.UnexpectedError('State provided but actor stateless') LOGGER.debug('Setting %s state (%d bytes)', self, len(state)) params = self.get_params() # keep the original hyper-params self.__dict__.update(cloudpickle.loads(state)) self.set_params(**params) # restore the original hyper-params
[docs] def get_params(self) -> typing.Mapping[str, typing.Any]: """Get the current hyper-parameters of the actor. The *Params* output port representation. All the values returned by this method must be acceptable by the companion :meth:`set_params`. The default implementation returns empty mapping. Returns: Dictionary of the name-value of the hyper-parameters. """ return {}
[docs] def set_params(self, **params: typing.Any) -> None: """Set new hyper-parameters of the actor (typically by a hyper-parameter tuner). The *Params* input port representation. The implementation of this method can choose to accept only a subset of the constructor arguments if some of them are not expected to be changed during the lifetime. Args: params: New hyper-parameters as keyword arguments. """ if params: raise NotImplementedError(f'Params setter for {params} not implemented on {self}')
[docs] @classmethod def builder(cls: 'type[_Actor]', *args, **kwargs: typing.Any) -> 'flow.Builder[_Actor]': """Creating a builder instance for this actor. Args: args: Positional arguments. kwargs: Keyword arguments. Returns: Actor builder instance. """ return Spec(cls, *args, **kwargs)
@classmethod def is_stateful(cls) -> bool: """Check whether this actor is stateful. By default, this is determined based on the existence of user-overridden train method. Returns: True if stateful. """ return cls.train.__code__ is not Actor.train.__code__
# Generic actor type. _Actor = typing.TypeVar('_Actor', bound=Actor)
[docs]class Builder(typing.Generic[_Actor], metaclass=abc.ABCMeta): """Interface for actor builders providing all the required initialization configuration for instantiating an actor.""" @property @abc.abstractmethod def actor(self) -> type[_Actor]: """Target actor class.""" @property @abc.abstractmethod def args(self) -> typing.Sequence[typing.Any]: """Actor positional arguments.""" @property @abc.abstractmethod def kwargs(self) -> typing.Mapping[str, typing.Any]: """Actor keyword arguments."""
[docs] def update(self, *args, **kwargs) -> 'flow.Builder[_Actor]': """Return new builder with the updated parameters. Args: args: Positional arguments to *replace* the original ones. kwargs: Keyword arguments to *update* the original ones. Returns: New builder instance with the updated parameters. """ return*(args or self.args), **self.kwargs | kwargs)
[docs] def reset(self, *args, **kwargs) -> 'flow.Builder[_Actor]': """Return new builder with the new parameters. Args: args: Positional arguments to *replace* the original ones. kwargs: Keyword arguments to *replace* the original ones. Returns: New builder instance with the new parameters. """ return*args, **kwargs)
def __repr__(self): return name(, *self.args, **self.kwargs) def __call__(self, *args, **kwargs) -> _Actor: return*(args or self.args), **self.kwargs | kwargs) class Spec(collections.namedtuple('Spec', 'actor, args, kwargs'), Builder[_Actor]): """Actor builder holding all the required initialization configuration for instantiating the particular actor. Args: actor: Target actor class. args: Actor positional arguments. kwargs: Actor keyword arguments. """ actor: type[_Actor] args: tuple[typing.Any] kwargs: typing.Mapping[str, typing.Any] def __new__(cls, actor: type[_Actor], *args: typing.Any, **kwargs: typing.Any): inspect.signature(actor).bind_partial(*args, **kwargs) return super().__new__(cls, actor, args, types.MappingProxyType(kwargs)) def __getnewargs_ex__(self): return (, *self.args), dict(self.kwargs) def __repr__(self) -> str: return Builder.__repr__(self)